Cpp算法-图论-欧拉回路

邻接矩阵

说明

G[][]邻接矩阵

deg[]

ans[]欧拉回路

n, e点数、边数

实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
int G[maxn][maxn], deg[maxn], ans[maxn];
int n, e, x, y, ansi, s;

void Euler(int i)
{
for (int j = 1; j <= n; ++j)
{
if (G[i][j])
{
G[i][j] = G[j][i] = 0;
Euler(j);
}
}
ans[++ansi] = i;
}

int main()
{
scanf("%d %d", &n, &e);
for (int i = 1; i <= e; ++i)
{
scanf("%d %d", &x, &y);
G[x][y] = G[y][x] = 1;
deg[x]++;
deg[y]++;
}
s = 1;
for (int i = 1; i <= n; ++i)
if (deg[i] % 2 == 1)
s = i;
Euler(s);
for (int i = 1; i <= ansi; ++i)
printf("%d ", ans[i]);
printf("\n");
return 0;
}

链式前向星

说明

n, m点数、边数

head, edge[]链式前向星

ans[], ansi路径、数组大小

vis[]记录

make()建图

实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
int head[maxn];
struct Node
{
int to, next;
}edge[maxm];

void make()
{
scanf("%d %d", &n, &m);
for (int k = 1; k <= m; ++k)
{
int i, j;
scanf("%d %d", &i, &j);
edge[k].to = i;
edge[k].next = head[i];
head[i] = k;
}
return;
}

int ans[maxm];
int ansi = 0;
bool vis[2 * maxm];

void dfs(int now)
{
for (int k = head[now]; k != 0; k = edge[k].next)
{
if (!vis[k])
{
vis[k] = true;
vis[k ^ 1] = true;
dfs(edge[k].to);
ans[ansi++] = k;
}
}
}

Cpp算法-图论-欧拉回路

https://blog.tonycrane.cc/p/57662471.html

作者

TonyCrane

发布于

2019-01-10

更新于

2020-05-05

许可协议